【必备】初二数学教学计划3篇
时间过得太快,让人猝不及防,相信大家对即将到来的工作生活满心期待吧!此时此刻需要为接下来的工作做一个详细的计划了。你所接触过的计划都是什么样子的呢?以下是小编帮大家整理的初二数学教学计划3篇,欢迎阅读,希望大家能够喜欢。
初二数学教学计划 篇1在这秋高气爽的日子,我们又迎来了新的学期,本学期我代初二118、119两个班的数学,现制定本学期教学工作计划如下:
一、 学生知识现状分析
经过一学年的学习,学生们已经适应了新的学习环境,对初中数学的数学思维和数学思想也已经有所领悟,但经过初一学年的学习和考试,我们发现学生的理解能力和运用所学知识分析、解决问题的能力都需要进一步培养和提高。
二、 教材分析
本学期主要教学任务:数的开方、整式的乘除、勾股定理、平移与旋转、平行四边形的认识。
教材简单分析:八年级数学上册力求教学活动以学生为本,从实际问题情境入手,选择贴近学生实际生活的素材,使学生通过问题解决的过程,获得数学概念,掌握解决问题的技能与方法;同时也编排一些应用性、探索性和开放性的问题,调动学生的主动性,给学生留有充分的时间和空间,自主探索实践,从而促进学生数学思维能力、创造能力的培养和提高,为学生的终身可持续发展奠定良好的基础
三、 教材重难点:
1.平方根、算术平方根、立方根的概念,会用根号表示;会用计算器求一个非负数的算术平方根和任意一个数的立方根。
2.会用幂的运算法则、整式乘法公式、乘法公式进行计算;会用提公因式、公式法进行因式分解。
3.掌握勾股定理、其逆定理,会运用勾股定理和其逆定理解决相关的问题。
4.认识平移、旋转的概念,理解平移、旋转的基本特征与性质,并利用轴对称、平移与旋转进行设计简单的图案;了解图形全等的概念。
5.掌握平行四边形和特殊的平行四边形(矩形、菱形和正方形)的概念、性质,解决相关的问题;掌握梯形和等腰梯形的概念、性质,并解决一些简单的问题。
难点:培养学生分析问题、解决问题的综合能力。
四、 教学措施
1、认真备课。设计好课堂活动,收集相关资料给学生更多的知识补充。
2、认真上好每一堂课,加强课堂教学的驾驭能力,精心选择好课堂练习。
3、虚心向老师请教,多听其他老师的课,吸收精华,提高教学质量。
4、科学组织好单元考试、期中考试,认真坐好评卷工作。
5、加强与班主任的沟通和联系,形成教育合力,努力做到因材施教。
五、 教学目标
通过本学期的教学要使学生进一步感受数学学科的独特魅力和乐趣,感受到经历学生自主探索,培养学生学习数学的兴趣,培养学生探索数学知识的能力,培养学生分析问题和解决问题的能力,使每个学生都能学到有用的数学。
初二数学教学计划 篇2聪明出于勤奋,天才在于积累。尽快地掌握科学知识,迅速提高学习能力,接下来为大家提供八年级数学下册教学计划。
一、学生分析:
八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。结合上学期的学习情况,及本学期的主要适应点,想在本学期获得理想成绩,老师和学生都要付出努力,查漏补缺,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。
二、教材分析:
第1章 二次根式
二次根式属于“数与代数”领域的内容,它是在学生学习了平方根、立方根等内容的基础上进行的,是对七年级上册“实数”、“代数式”等内容的延伸和补充。二次根式的运算以整式的运算为基础,在进行二次根式的有关运算时,所使用的运算法则与整式、分式的相关法则类似;在进行二次根式的加减时,所采用的方法与合并同类项类似;在进行二次根式的乘除时,所使用的法则和公式与整式的乘法运算法则及乘法公式类似。这些都说明了前后知识之间的内在联系。
本章的主要内容有二次根式,二次根式的性质,二次根式的运算(根号内不含字母、不含分母有理化)。
第2章 一元二次方程
方程教学在中学数学教学中占有很大的比例,一元二次方程在初中代数中占有重要地位。一方面,一元二次方程可以看成是前面所学过的有关知识的综合运用,如有理数、实数的概念和整式、分式、开平方等的运算,一元一次方程、二元一次方程组解法等知识,在本章都有应用。从数学角度看,这一章的学习有一定难度,如果前面某个环节薄弱或知识点有问题,就会给本章的学习带来困难,因此,这一章的教学是对以前所学的有关知识的检验,又是一次复习与巩固。当然,一元二次方程知识也是前面所学知识的继续和发展,尤其是方程方面知识的深入和发展。
本章的主要内容是一元二次方程的解法和应用,课本首先引入一元二次方程的概念,从实数的性质,将分解成为两个一次因式相乘积为零的一元二次方程转化为两个一元一次方程入手,介绍了利用因式分解法解一元二次方程的方法,体现了数学的转化思想。接着课本首先从数的开平方的知识出发,直接讲开平方法,然后依次介绍了配方法和公式法。在讲述公式法的同时,课本特别给出了利用计算器解一元二次方程的解法示例,以揭示技术发展给数学学习带来的影响,这也是一种新的尝试。同时,以建立数学模型为主要着力点介绍了一元二次方程的应用,并在例题的设置上充分考虑了图表、立体图形、物体运动和经济活动中的问题背景,力图使学生在现实的环境中学习数学。这一章是全书乃至整个初中代数的一个重点内容。因为这一部分内容既是对以前所学内容的总结、巩固和提高,又是以后学习的知识基础。因此这一章可以说是起到了承上启下的作用。高中阶段的指数方程、对数方程及三角方程,无非就是指数、对数、三角函数的有关知识与一元一次方程、一元二次方程的综合而已。初中代数中的不少主要技能、解题方法以及一些常用的数学思想方法,在本章都有所体现。例如,换元法、因式分解法、配方法等。另外,从具体到抽象的概括能力、逻辑推理能力等等在本章也有体现。可以说,无论从基础知识还是基本技能看,这一章都占有重要的地位。在本章的内容中,应以一元二次方程的解法,特别是公式法作为重点。
第3章 频数及其分布统计学是搜集数据、分析数据,并根据它获得总体信息的科学。本套教材在七年级上册安排了“数据与图表”,着重介绍了数据的收集、整理的初步方法;在八年级上册安排了“样本与数据分析初步”,通过对数据集中程度和离散程度的统计量的计算,初步了解了如何对数据的基本状态进行分析。为了进一步分析、处理数据,供决策时参考,有时我们还要了解数据的分布情况,找出新的特征数。“频数及其分布”这一章就是解决了这一问题。“频数及其分布”这部分内容在原总指浙江版义务教材中也有,但只是作为概率统计初 ……此处隐藏4676个字……数的概念。引入无理数使数域扩充到实数域,初中的所有数的运算均在实数范围内进行的。无理数概念的理解决定实数概念的理解,有利于实数分类和运算的掌握。要让学生掌握关于有理数的运算律和运算性质再实数范围内仍成立,这是中学数学的基础。
教学难点:
1、平方根与算术平方根的区别于联系。首先这两个概念容易混淆,而且各自的符号表示意义学生不是很容易区分,教学中要抓住算术平方根式平方根中正的那个,讲清各自符号的意义,区分两种表示的不同。对于平方根运算不仅数有限制,而且结果有两个,这是与以前学过的数的运算很大的区别,要让学生真正理解有一定的困难。
2、立方根的唯一性及负数立方根的意义。由于平方根的学习,学生容易错误的得出立方根与平方根的结论相似,因此要对比讲解两者的区别:对于任何一个数都有唯一的立方根,而且学生难于理解负数立方根的意义,应注意从立方与开立方互为逆运算的角度分析。
3、无理数和实数的理解。无理数和实数比较抽象,尤其是无理数不能像实数那样具体描述出某个数的特点,在学生思维中想象不出它的存在,借助实数和数轴上的点一一对应,注意通过具体数加以解释。实数抽象程度较高,学生对实数意义有所了解就可以。
四、单元教学思路及策略:
(一)加强与实际的联系
本章内容与实际的联系是非常密切的。例如,无理数是从现实世界中抽象出来的一种数,开平方运算和开立方运算也是实际中经常用到的两种运算,用有理数估计无理数的大小在现实生活中经常遇到等等。因此,本章内容在编写时注意联系实际,对于一些重要的概念和运算紧密结合实际生活展开,例如算术平方根是从已知正方形的面积求它边长、立方根是从已知立方体的体积求它边长等典型的实际问题引出的,再如用有理数估计无理数的大小也是紧密结合实际进行的。编写时,将本章内容与实际紧密联系起来,可以使学生在解决实际问题的过程中,认识实数的有关概念和运算。
(二)加强知识间的纵向联系
本章内容属于“数与代数”这个领域,有关数的内容,学生在七年级上册已经系统地学过有理数,对有理数的概念和运算等有了较深刻的认识,本章是在有理数的基础上学习实数的初步知识,本章很多内容是有理数相关内容的延续和推广,因此,本章编写时,注意加强知识间的相互联系,使学生更好地体会数的扩充过程中表现出来的概念、运算等的一致性和发展变化。例如,对于绝对值和相反数的概念,实数的运算法则和运算性质,平方与开平方、立方与开立方的互为逆运算关系等都是在有理数的基础上展开的。另外,本章前两节“平方根”“立方根”在内容上基本是平行的,因此,编写 “立方根”这节时,充分利用了类比的方法,例如类比平方根的概念的引入方式给出立方根的概念,类比开平方运算给出开立方运算,类比平方与开平方运算的互逆关系研究立方与开立方运算的互逆关系等。这样的编写方法,有助于加强知识间的相互联系,通过类比已学的知识学习新知识,使学生的学习形成正迁移。
(三)留给学生探索交流的空间
根据本章内容的特点,对于一些重要的概念和结论,编写时注意了让学生通过观察、思考、讨论等探究活动归纳得出结论的过程。例如,对于平方根概念的引入,教科书首先通过一个问题情景,引出已知正方形的面积求边长的问题,接着又让学生通过填表的方式,计算几个不同面积的正方形的边长,使学生感受到这些问题与以前学过的已知正方形的边长求面积的问题是一个相反的过程,并由此指出,这些问题抽象成数学问题就是已知一个正数的平方,求这个正数的问题,并在此基础上给出算术平方根的概念,这样就让学生通过一些具体活动,在对算术平方根有些感性认识的基础上归纳给出这个概念。再比如,在讨论数的立方根的特征时,教材首先设置“探究”栏目,在栏目中以填空的方式让学生计算一些具体的正数、负数和0的立方根,寻找它们各自的特点,通过学生讨论交流等活动,归纳得出“正数的立方根是正数,0的立方根是0,负数的立方根是负数”的结论,这样就让学生通过探究活动经历了一个由特殊到一般的认识过程,在探究活动的过程中发展思维能力,有效改变学生的学习方式。
三、几个值得关注的问题
(一)把握教学要求
本册书对于某些内容采用提前渗透、逐步提高的编写方式。例如,对于平面直角坐标系,在第6章“平面直角坐标系”中研究了平面内的点与有序数对的对应关系,其中点的坐标都是有理数,在本章将把点的坐标由有理数的情形扩展到实数范围,并建立平面内的点与有序实数对的一一对应关系,为后续学习函数的图象、函数与方程和不等式的关系等打下基础。
对于平移变换,教课书在第5章“相交线与平行线”中安排了一节“平移”,探讨得出“平移前后的两个图形的对应点的连线平行且相等”等平移变换的基本性质,又在第6章“平面直角坐标系”中安排了用坐标方法研究平移的内容,从坐标的角度进一步认识平移变换,这时平移中遇到的坐标都是有理数的情况。在本章,由于建立了点与有序实数对的一一对应关系,本章又在实数范围内研究平移的内容,为后续学习利用平移变换探索平面图形的几何性质以及综合运用几种变换(平移、旋转、轴对称、相似等)进行图案设计等打下基础。
本章还通过一个例题学习了实数的简单运算,安排这个例题的目的是要说明有理数的运算法则和运算性质等在实数范围内仍然成立,关于实数的运算在后面的“二次根式”一章中还要继续研究。
另外,本章也提前渗透了一些数学思想和方法。比如,本章的数学活动1,涉及到勾股定理的内容,让学生利用勾股定理,在数轴上画出表示几个无理数的点。这里只是结合无理数渗透了勾股定理,关于勾股定理以后还要进行专门的研究。
综上所述,本章教学时要注意把握教学要求,以一种发展的、动态的观点看待教学要求,不能要求一次到位。
(二)发挥计算器的作用,加强估算能力的培养
使用计算器进行复杂运算,可以使学习的重点更好地集中到理解数学的本质上来,估算是一种具有实际应用价值的运算能力。提倡使用计算器进行复杂运算,加强估算,综合运用笔算、计算器和估算等方式培养学生的运算能力,是本章的一个教学要求。为了达到这个教学目的,本章专门安排了利用计算器求数的平方根和立方根以及利用有理数估计无理数的大致范围等内容。因此,教学中可以结合具体内容,综合利用各种途径培养学生的运算能力。
(三)重视人文教育
无理数的发现引发了数学史上的第一次危机,是数学发展史上的重要里程碑。无理数的发现经历了一个漫长而艰苦的过程,在发现无理数的过程中,体现了人类为追求真理而不懈努力的精神。因此,教学时可以结合无理数的发现,挖掘数学知识的文化内涵,使学生感受丰富的数学文化,开阔他们的眼界,增长他们的见识。
另外,本章编写时注意加强与实际的联系,在选择素材时,力求选取学生感兴趣的和富有时代气息的实际问题。例如,本章选择了我国神舟5号载人飞船取得圆满成功的素材,通过这个素材可以使学生从数学的角度更多地了解航天知识,培养学生的民族自豪感和爱国主义情操,激励学生更加努力地学习,这样使学生在学习数学的同时,也得到了人文方面的教育。
文档为doc格式